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We study the configurational properties of single polymers in a theta solvent by Monte Carlo simulation of
the bond fluctuation model. The intramolecular structure factor at the theta point is found to be distinctively
different from that of the ideal chain. The structure factor shows a hump around q�5 /Rg and a dip around
q�10 /Rg in the Kratky plot with Rg being the radius of gyration. This feature is apparently similar to that in
a melt. The theoretical expression by the simple perturbation expansion to the first order in terms of the Mayer
function can be fitted to the obtained structure factor quite well, but the second virial coefficient cannot be set
to zero.
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I. INTRODUCTION

One of the basic premises in the polymer physics is that,
the bonds connecting neighboring monomer units are uncor-
related beyond the persistent length along the chain �1�. This
property allows us to consider only a flexible chain as long
as we are interested in large scale properties of a polymer
chain that is much longer than its persistent length. In this
sense, it was a little embarrassing to realize that there is
actually a long range correlation in the bond orientation of a
polymer chain, and that the bond-bond correlation function
decays not exponentially but as the power law �2–4�.

The traditional picture for the bond-bond correlation is
based on a simple calculation for the polymer with a fixed
bond angle around freely rotating bonds. In this case, one
can calculate the bond-bond correlation function explicitly to
show the exponential decay with a persistent length �5�. The
existence of the long range correlation, however, has been
pointed out �2,3�, and it was demonstrated recently that the
power law behavior is induced in the bond-bond correlation
through the interaction between monomers separated by a
long distance in the curvilinear coordinate along the chain
�4,6–9�. The power law in the bond-bond correlation holds
not only for an excluded volume chain, but also for a chain
in a melt and in a theta solvent, where a polymer chain is
supposed to behave as an ideal chain �1,5�. This has been
confirmed both by numerical simulations and by theoretical
analyses.

This deviation from the ideality of a chain in a melt has
been seen also in the intramolecular structure factor. For the
ideal chain, the structure factor decays as q−2 in the interme-
diate range, 1 /Rg�q�1 /a, where Rg and a are the gyration
radius and the bond length, respectively. This q−2 decay
comes from the fractal dimension of the ideal chain configu-
ration. The intramolecular structure factor of the polymer
chain in a melt has been studied numerically and theoreti-
cally, and it has been found that there exists a substantial
deviation from the ideal chain behavior �8�.

In this paper, we study the structure factor of a single
polymer molecule in a theta solvent, which is another situa-
tion where a polymer chain is supposed to become ideal

effectively. In a melt, the interaction between monomers is
screened by the existence of other polymer chains, and the
excluded volume effect is canceled exactly by the induced
attraction due to the incompressibility of the system �5,10�
while the interaction in a theta solvent is being adjusted by
some fine tuned external parameter, such as temperature, so
that the excluded volume effect is compensated by the attrac-
tive part of the interaction. We study how this fine tuning of
the parameter may affect on the virtual ideality of the struc-
ture factor.

This paper is organized as follows. After quickly review-
ing how the long range correlation comes into the bond-bond
correlation in Sec. II, the model and the method of our simu-
lations are described in Sec. III, and the simulations results
are given in Sec. IV. The theoretical analysis is outlined in
Sec. V, and the results are discussed in connection with those
for melt in Sec. VI. Detailed expressions of the theoretical
analysis are given in the Appendix.

II. BOND-BOND CORRELATIONS IN A POLYMER CHAIN

Let us quickly review how the long range correlation
should arise in the bond-bond correlation along a polymer
chain �4�. We consider a single polymer that consists of N
monomers. Let rn �n=1, ¯ ,N� be the position of the n-th
monomer in it, and the bond vector is denoted as

an � rn+1 − rn. �1�

We define a subchain as a part of the chain, and introduce the
subchain vector as

Rn�s� � rn+s − rn = �
r=n

n+s−1

ar. �2�

Now, we assume that the bond-bond correlation depends
only on the chemical distance between the bonds
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P�s� =
1

a2 �an · an+s	 , �3�

where a is the average bond length and �¯ 	 denotes the
ensemble average. Then, the size of the subchain does not
depend on n, and we have

R�s�2 � �Rn�s�2	 
 a2�s + �
0

s

dr�s − r�P�r�
 �4�

in the large s approximation. This gives

P�s� 

1

a2

�2

�s2R�s�2 � s−� �5�

with �=2−2� if the subchain size scales as

R�s� � s� �6�

with the exponent ��1 /2. We have �
0.824 for the ex-
cluded volume chain, where �
0.588.

For the ideal chain with �=1 /2, Eq. �5� gives P�s�=0 as
it should, but for the case of apparent ideality of a polymer
chain in a melt or a theta solvent, we have

P�s� � s−3/2 �7�

because of the correction term,

R�s�2 
 a2s�c0 + c1s−1/2 + ¯� . �8�

III. MODEL AND SIMULATION METHOD

We perform Monte Carlo simulations of the bond fluctua-
tion model �BFM� on the three dimensional cubic lattice
�11,12�. A polymer chain consists of N monomers, and the
i-th monomer is located at the center of a cubic cell ri, oc-
cupying the cell with 8 vertices at lattice sites. The bond
length between consecutive monomers along the chain
should be in the range �2,�10� with the exception of �8. The
i-th and j-th monomers that are not consecutive along the
chain, namely, j� i�1, interact each other through the
“quasi-Lennard-Jones” potential energy �13�

U�rij�
kBT

= �− ��2�rij − 2�3 − 3�rij − 2�2 + 1� for rij = 2,�5,�6, and �8

0 otherwise
� , �9�

where rij = �ri−r j� is the distance between the interacting
monomers, and kB and T are the Boltzmann constant and the
temperature, respectively. The dimensionless parameter � is
proportional to the inverse temperature and characterizes the
interaction �14�.

We perform Monte Carlo simulations, using Metropolis
method along with the slithering snake algorithm to acceler-
ate the relaxation toward equilibrium �15�. In our system,
there is only one polymer chain with N monomer units. One
Monte Carlo step consists of N trials of random displacement
to one of the nearby sites for randomly chosen monomers,
followed by N slithering snake trials.

The quantities we study are the radius of gyration Rg,

Rg
2 �� 1

2N2�
i=1

N

�
j=1

N

�ri − r j�2� , �10�

the intrachain structure factor S�q�,

S�q� � � 1

N
�
i=1

N

�
j=1

N

eiq·�ri−rj�� , �11�

and the bond-bond correlation P�s� averaged over the chain,

P�s� �
1

a2�N − 1 − s� �
i=1

N−1−s

�ai · ai+s	 , �12�

with the average bond length a,

a2 �� 1

N − 1 �
i=1

N−1

ai
2� , �13�

where the angular brackets represent the ensemble average.
Note that the radius of gyration can be expressed using

the bond-bond correlation by a similar equation as Eq. �4�

Rg
2 


1

6
a2N�1 + �

0

N

dr�1 −
r

N

3

P�r�� . �14�

IV. RESULTS

A. Theta point

First, we have to determined the theta point for our model.
It is often defined as the point where the second virial coef-
ficient vanishes. In our simulations, we define the theta point
as the point where the radius of gyration Rg behaves as an
ideal chain,

Rg � �N , �15�

in the large N limit. The interaction parameter �c at the theta
point is determined numerically from the data of Rg for vari-
ous values of � and chain length N by fitting them to the
finite size scaling form
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Rg
2 =

1

6
N2��2f��� − �c�N	� , �16�

with the two exponents, � and 	. The function f�x� is the
scaling function that satisfies f�0�=1, and � is the length
scale proportional to the average bond length. Figure 1
shows that the data fit well to the scaling form �16� with

�c = 0.63,� = 	 = 1/2,� = 3.17. �17�

B. Theta point determined by bond-bond correlation

As we have discussed, the bond-bond correlation function
decays as s−3/2 at the theta point. Figure 2 shows the bond-
bond correlation function P�s� for various temperatures near
the theta point for N=1024. It shows that the data fit to the
form

P�s�s3/2 = B̃0�1 − �/�c�N��s + Ã + ¯ �18�

that is consistent with the theoretical results by Shirvanyants,
et al. �9�. The theta point may be defined as �=�c�N� where
the bond-bond correlation decays as s−3/2, but it turns out that

�c�N� depends on N. The N dependence of �c�N� plotted in
Fig. 3 shows

�c�N� − �c �
1

�N
�19�

with the theta point in the infinite N limit �c=0.625. This
value is close enough to the previous estimate of �c=0.63 by
the scaling plot of Rg. In the rest of the paper, we use �c
=0.63 for the theta point. Note that the N dependence of
�c�N� given by Eq. �19� is consistent with the ideal chain
behavior of Rg of Eq. �15� at �=�c in respect to Eq. �14�.

C. Structure factor

The structure factor for the ideal chain, S0�q�, in the large
N limit is given by

S0�q� = NfD�qRg0� , �20�

with the radius of gyration for the ideal chain

Rg0
2 �

1

6
Na2 �21�

and the Debye scattering function,

fD�x� �
2

x4 �e−x2
− 1 + x2� . �22�

In the intermediate length scale, i.e., 1 /Rg0�q�1 /a, this
decays as

S0�q� 

12

a2 q−2 + O�q−4� . �23�

The 1 /q2 dependence comes from the scaling behavior of the
ideal chain, therefore, the existence of plateau in the plot of
S�q�q2, i.e., Kratky plot, has been considered to be a sign of
the ideality in a polymer chain behavior.

Figure 4 shows the Kratky plot of our numerical simula-
tions at the theta point for N=1024�4096; the wave number
q is scaled by the numerically obtained radius of gyration Rg
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FIG. 1. �Color online� The scaling plot for the radius of gyration
Rg. The scaled radius of gyration Rg

26 / �N���2 are plotted against
��−�c�N	 with �c=0.63, �=	=0.5, and �=3.17 for various values
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FIG. 2. �Color online� Bond-bond correlation. P�s�s3/2 are plot-
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FIG. 3. �Color online� The theta point determined by the bond-
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ear extrapolation to the infinite N shows the theta point, �c=0.625.
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as Q�qRg. As the number of monomers N increases, the
curve in the smaller Q regime tends to converge to a com-
mon trend, but it is clearly different from that of the ideal
chain �the dashed line�. The Kratky plot at the theta point
shows a hump around Q�5 and a dip around Q�10, and
does not show the plateau as the one would expect for the
ideal chain. Their general features are apparently similar to
those found for a polymer chain in a melt �8�.

V. THEORY

Now, we estimate the structure factor theoretically and
compare it with those obtained by the simulations. Suppose
u�rs,r� to be the interaction potential between the s-th and the
r-th monomers with rs,r�rs−rr. Then, the structure factor
Eq. �11� is written as

S�q� =
2

N
�

n
m

�eiq·rn,me−U/kBT	0

�e−U	0
+ 1, �24�

where

U � �
r
s

u�rr,s� , �25�

and �¯ 	0 represents the statistical average for the ideal
chain.

We now employ the approximation

e−U/kBT 
 1 + �
r
s

f�rr,s� �26�

using the Mayer function

f�rr,s� � e−u�rr,s�/kBT − 1. �27�

Then, up to the first order in f , the correction in the structure
factor �S�q� is given by

�S�q� � S�q� − S0�q�



2

N
�

n
m
�
r
s

��eiq·rn,mf�rr,s�	0 − �eiq·rn,m	0�f�rr,s�	0� .

�28�

There are four types of contribution in Eq. �28�, depend-
ing upon the relative positions of n, m, r, and s �Fig. 5�.
Adopting the bead-spring model for the ideal chain average
� . . . 	0 with the average bond length a, and employing the
further approximation valid for qa�1, we obtain the expres-
sion

1

N
�S�q� 
 F�qRg0��NB + G�qRg0�A �29�

up to the second leading order in N. The functional forms for
F and G are given in the Appendix. The dimensionless pa-
rameters,

B � −
1

a3� drf�r� , �30�

A �
1

a5� drr2f�r� , �31�

characterize the interaction. The parameter B is twice of the
second virial coefficient for the unlinked monomer gas �16�,
and is supposed to be close to zero for the theta solvent �10�.
Note that B comes into S�q� as �NB.

Figure 6�a� shows the Kratky plots for the theoretical
structure factor S�Q�Q2 with Q�qRg0 by Eq. �29� with A
=0.154 and �NB=−0.55 along with the curve for A=0.154
and B=0, the Debye function, and the simulation data for
N=4096. One can see that the curve for B=0 is almost pro-
portional to the Debye function and cannot be fitted to the
simulation data. Figure 6�b� shows �S�Q�Q2 /N with the
simulation data for various values of N. The data converge to
the theoretical curve quite well as N increases.

In Fig. 7, the large Q behavior of the structure factor are
plotted in the logarithmic scale, after subtracting the leading
order term of C /Q2 with C=1.336. It shows clearly that the
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FIG. 4. �Color online� Kratky plots for the structure factor
against Q�qRg. The simulation data at �=0.63 for the chain with
the length N=1024, 2048, and 4096 are plotted along with the De-
bye scattering function �the dashed line�. For the value of Rg, the
values obtained by the simulations are used for the simulation data
and Rg0=Na2 /6 for the analytical expressions. The red curve rep-
resent the theoretical estimate, Eq. �29�, with �NB=−0.55 and A
=0.154.
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second leading order is 1 /Q3, which is consistent with the
asymptotic expression we obtained in Eq. �A20�.

VI. DISCUSSIONS

Our findings are summarized as follows: �i� the theta
point for the finite chain �c�N�, where the bond-bond corre-
lation decays as s−3/2, depends on the chain length N, and in
the infinite chain length limit it converges to the theta point
�c determined by the scaling behavior of the radius of gyra-
tion. �ii� The structure factors at the theta point �c obtained
by the numerical simulations are distinctively different from
that of the ideal chain, i.e., �iia� in the intermediate range of

q�1 /Rg, Kratky plot of the structure factor shows a hump
and a dip, and �iib� in the larger q range, 1 /Rg�q�1 /a, the
structure factor decays as 1 /q2 with the next order term of
1 /q3. �iii� In the large N limit, numerically obtained structure
factors fit well to the simple perturbation expression up to
the first order of the Mayer function with the fitting param-
eters �NB=−0.55 and A=0.154.

In comparison with the case of a melt, the obtained struc-
ture factors at the theta point apparently resemble the ones of
a melt in the existence of a hump and a dip �8�. In the large
q region, however, the structure factors for the two cases
differ; In the case of melt, it has been shown by numerical
simulations that structure factors decays as 1 /q3 for the large
q region �8�, in contrast with the present case, where we
found the 1 /q2 decay with the positive 1 /q3 correction. The
1 /q3 decay in the melt was interpreted as a result of renor-
malization from the 1 /q term obtained by the one-loop ap-
proximation �8� while the 1 /q2 term and the 1 /q3 term at the
theta point directly correspond to the A term and the �NB
term, respectively, in our theoretical expression. In the real
space, the 1 /q2 decay of the structure factor in large q means
the 1 /r density correlation of the ideal chain in short r. The
existence of the positive 1 /q3 correction and the hump
around q�5 /Rg implies that the density correlation does not
decay as fast as that of the ideal chain around r�Rg.

The simulated structure factors here at the theta point re-
semble those of a melt, but it is intriguing that we need to set
�NB�0 for our theoretical expression of the structure factor
to fit to the numerical results at the theta point �c. The theta
point is often considered as the point where the second virial
coefficient B /2 vanishes. Actually, if we set B=0, the struc-
ture factor shows Kratky plateau and looks pretty much like
the ideal one �the dotted line in Fig. 6�a��, but this cannot be
fitted to the simulation results by adjusting A alone even with
an arbitrary factor. Theoretically, if we consider higher order
corrections, the theta point should correspond to the vanish-
ing point of the interaction parameter z

z � �Nb , �32�

where b is the excluded volume parameter with the additive
renormalization by the higher order cluster contributions,
and may be given in the form

b = B + CN−1/2 + . . . �33�

with a constant C. However, such renormalization effect
could be partially taken into account by replacing B with b,
and one would expect the structure factor at the theta point
should be given by the one with �NB=0 in our expression.

In the bond-bond correlation P�s�, we observed the analo-
gous N dependence, which can be interpreted in the same
way. Shirvanyants et al. �9� have obtained the theoretical
expression corresponding to Eq. �18� in a similar approxima-
tion to the one we employed for S�q�, and showed that the
coefficients for the s−1/2 and the s−3/2 terms in Eq. �18�, i.e.,

B̃0�1−� /�c�N�� and Ã, are proportional to the parameters B
and A, respectively. The observed N dependence in �c�N� as
Eq. �19� in our simulations should be a result of higher order

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

S(
Q

)Q
2 /N

(a)

Debye
Simulation with N = 4096

Theory with A =0.154, N1/2 B =−0.55
B = 0

−0.75

−0.5

−0.25

0

0.25

0 10 20 30 40 50 60

δS
(Q

)
Q

2 /N

Q

(b) Theory
N = 256

512
1024
2048
4096

FIG. 6. �Color online� Theoretical results for structure factors.
The numerical estimates by Eq. �29� are plotted with A=0.154 and
�NB=−0.55, and 0.

10−5

10−4

10−3

10−2

10−1

100 101 102

S(
Q

)/
N

−
C

/Q
2

Q

Q−3

C = 1.336

N = 256
512

1024
2048
4096

FIG. 7. �Color online� The large Q behavior of the structure
factor after subtracting C /Q2 with C=1.336.

NONIDEAL BEHAVIOR OF THE INTRAMOLECULAR … PHYSICAL REVIEW E 80, 051804 �2009�

051804-5



effects, which could be obtained by replacing the coefficient
of s−1/2 term with the renormalized one as Eq. �33�.

Regarding the origin for the deviation of the structure
factor from the Debye function, an obvious possibility could
be that inaccurate estimate for the theta point �c, i.e., our
estimate �c=0.63 is not close enough to the theta point for
the structure factor to be Debye-like even though the two
independent estimates from the radius of gyration Rg and the
bond correlation coincide with each other within our numeri-
cal precision. This might happen due to the slow conver-
gence caused by the logarithmic correction at the theta point.
Another possibility, perhaps a more interesting one, would be
that the tricritical fluctuations at the theta point produce a
nontrivial contribution to the structure factor.
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APPENDIX: FIRST ORDER CALCULATION OF S(q) IN
THE MAYER FUNCTION

In the Appendix, we describe the calculation of Eq. �28�
to obtain the explicit expressions for F and G in Eq. �29�.

The contribution from the diagram �i� in Fig. 5 is given by

Si�q� =
2

N
�

1
s�m�n�r
N

��eiq·rn,mf�rr,s�	0 − �eiq·rn,m	0�f�rr,s�	0�

�
2

N
�

1
s�m�n�r
N

H�q;r − s,n − m� , �A1�

where

H�q;l1,l2� � � dr1f�r1�� dr2eiq·r2�G0�r1 − r2;l1 − l2�

− G0�r1;l1��G0�r2;l2� �A2�

with the free propagator

G0�r;n� � � 3

2�a2
3/2
exp�−

3r2

2a2n
� . �A3�

H�q ; l1 , l2� can be estimated as

H�q;l1,l2� = e−�1/6�q2a2l2� 3

2�a2l1

3/2� dre−3r2/2a2l1�e�1/6�q2a2l2

2/l1 cos� l2

l1
q · r� − 1
 f�r�


 � 3

2�

3/2

exp�−
1

6
q2a2l2� 1

l1
3/2�− �exp�q2a2

6

l2
2

l1
� − 1
B − �3/2

l1
�exp�q2a2

6

l2
2

l1
� − 1


+
1

6
q2a2 exp�q2a2

6

l2
2

l1
�� l2

l1

2�A� . �A4�

In the last expression, we have expanded the cosine up to q2,
which is valid for qa�1.

The contributions from �ii�, �iii�, and �iv� can be given in
terms of H as

Sii�q� =
2

N
�

1
m�s�r�n�
N

e−�1/6�q2a2�n−r�

�H�q;r − s,r − s�e−�1/6�q2a2�s−m� �A5�

Siii�q� =
2

N
�

1
s�m�r�n�
N

e−�1/6�q2a2�n−r�H�q;r − s,r − m�

�A6�

=Siv�q� . �A7�

For large N, we can replace the summation by integral
and obtain, to the leading orders in N,

Si�q� � N3/2Fi�qRg0�B + N1/2Gi�qRg0�A , �A8�

Sii�q� � N3/2Fii�qRg0�B + NGii�qRg0�A , �A9�

Siii�q� � N3/2Fiii�qRg0�B + N1/2Giii�qRg0�A , �A10�

with

Fi�Q� = − 2� 3

2�

3/2�

0

1

dp�
0

1

dl�p�1 − p��1 − l�

��e−Q2pl�1−l� − e−Q2pl� , �A11�

Fii�Q� = − 2� 3

2�

3/2�

0

1

dp�
p

1

dl
eQ2p − 1

p3/2 �1 − l��l − p�e−Q2l,

�A12�
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Fiii�Q� = − 2� 3

2�

3/2�

0

1

dp�
0

1

dl�1 − p +
e−Q2�1−p� − 1

Q2 

� � e−Q2pl�1−l� − e−Q2pl
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where ��s� is Riemann’s zeta function and ��3 /2�
=2.61237¯.

With these functions, the correction of the structure func-
tion is given by

1

N
�S�q� 
 F�qRg0��NB + G�qRg0�A �A17�

with

F�Q� � Fi�Q� + Fii�Q� + 2Fiii�Q� , �A18�

G�Q� � Gii�Q� �A19�

in the leading orders in N. For large Q, i.e., 1 /Rg0�q
�1 /a, we have
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with C
1.01171, and for small Q, i.e., q�1 /Rg0,
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�A21�

with Q�qRg0.
From Eq. �A21�, the correction for the radius of gyration

Rg is obtained as

Rg
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 �1 + 2� 3
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